Control-oriented Modeling of the Dynamics of Stirling Engine Regenerators
نویسندگان
چکیده
We develop a first-principles model of the regenerator component of a generic Stirling engine. The model is based on the Euler equations of one dimensional gas dynamics coupled with its convective/conductive heat transfer with the embedded mesh material. We investigate various methods for deriving simpler and low order control-oriented models from this first principles model. The basic criterion being high fidelity representation of the dynamics of the regenerator when coupled to other dynamic components of the engine. We identify several non-dimensional parameters that potentially categorize different modes of operation, and investigate the corresponding time-scale separation. A hierarchy of singularly perturbed models are derived in which acoustic dynamics are eliminated, periodic mesh dynamics are averaged, and the shape of the distributed regenerator gas state is approximated respectively. In addition, since the reduced model is to be operated cyclically when connected to other parts of the engine, we develop such a feedback-aware model reduction algorithm based on a Proper Orthogonal Decomposition (POD) with a chirped signal input (chirpPOD). This algorithm yields reduced models that are accurate over a range of engine operating frequencies.
منابع مشابه
An Investigation on the Effects of Gas Pressure Drop in Heat Exchangers on Dynamics of a Free Piston Stirling Engine
This paper is devoted to study the effects of pressure drop in heat exchangers on the dynamics of a free piston Stirling engine. First, the dynamic equations governing the pistons as well as the gas pressure equations for hot and cold spaces of the engine are extracted. Then, by substituting the obtained pressure equations into the dynamic relationships the final nonlinear dynamic equations gov...
متن کاملSensitivity analysis of dependency of working fluid thermo-dynamics properties to temperature on performance of Gama-type Stirling engine
This research proposes the effect of temperature variation in the Prandtl number on the power, the efficiency and the heat loss of the Gama-type Stirling engine. It should be noted that the Prandtl number included the viscosity, the thermal conductivity coefficient and the specific heat at constant pressures of the working fluid, which the temperature dependency of such first two thermo-dynamic...
متن کاملA Study on Performance of Solid Oxide Fuel Cell-Stirling Engine Cycle Combined System- Part I: SOFC Simulation by Programming in Matlab and Modeling in Hysys
In recent years, using new methods in utilization of energy resources has become necessary due to environmental pollution and restriction of energy resources. The hybrid system presented in this article produced power with SOFC and Stirling engine. The purpose is to analyze a 50 kW Solid Oxide Fuel Cell that could produce enough thermal energy for a 10 kW Stirling engine working in the hybrid s...
متن کاملاحتراق ذرات سوخت زیستتوده در یک واحد تولید همزمان توان و حرارت مقیاس کوچک
Increasing energy cost and reduction of fossil fuel resources have been resulted in increasing demand of renewable energy, such as micro biomass particles in small scale Stirling engines to generate combined heat and power. In such Stirling engines, biomass particles are burnt in external combustion chamber and then, the generated heat is transferred to the working fluid of the engine cycle. Th...
متن کاملA Lumped-parameter Dynamic Model of a Thermal Regenerator for Free-piston Stirling Engines
This paper uses lumped parameter dynamic equations to model the mass flow, piston dynamics, and control volume behavior inside a free-piston Stirling engine. A new model for a Stirling engine thermal regenerator that incorporates a dynamically changing temperature gradient is presented. The use of graphite as a regenerator matrix material is justified despite its limited background by comparing...
متن کامل